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The mathematical language presently used for quantum physics is a high-level 
language. As a lowest-level or basic language I construct a quantum set theory in 
three stages: (1) Classical set theory, formulated as a Clifford algebra of "S 
numbers" generated by a single monadic operation, "bracing," Br = ( .- .  }. (2) 
Indefinite set theory, a modification of set theory dealing with the modal logical 
concept of possibility. (3) Quantum set theory. The quantum set is constructed 
from the null set by the familiar quantum techniques of tensor product and 
antisymmetrization. There axe both a Clifford and a Grassmann algebra with sets 
as basis elements. Rank and ca.rdinality operators axe analogous to Schroedinger 
coordinates of the theory, in that they are multiplication or "Q-type" operators. 
"P-type" operators analogous to Schroedinger momenta, in that they transform 
the Q-type quantities, are bracing (Br), Clifford multiplication by a set X, and 
the creator of X, represented by Grassmann multiplication c(X) by the set X. Br 
and its adjoint Br* form a Bose-Einstein canonical pair, and c(X) and its 
adjoint c(X)* form a Fermi-Dirac or anticanonical pair. Many coefficient 
number systems can be employed in this quantization. I use the integers for a 
discrete quantum theory, with the usual complex quantum theory as limit. 
Quantum set theory may be applied to a quantum time space and a quantum 
automaton. 

1. I N T R O D U C T I O N  

Several  of  us here, i nc lud ing  F e y n m a n ,  F redk in ,  K a n t o r ,  M oussou r i s ,  
Petri ,  Wheeler ,  a n d  Zuse ,  suggest  tha t  the un iverse  m a y  be d iscre te  ra the r  
t h a n  c o n t i n u o u s ,  a n d  more  like a digi ta l  t han  a n  ana log  c o m p u t e r .  C. F.  
v o n  Weizsaecker  has  worked  this pa th  s ince the ear ly  1950s, a n d  r ecen t ly  I 
have  bene f i t t ed  f rom the re levant  work  of J. Ford .  

Von  N e u m a n n  po in t s  ou t  that  q u a n t u m  theory  revises the p red i ca t e  
a lgebra  of  physics,  m a k i n g  it cohe ren t  ( in the sense of  Jauch  that  i t  admi t s  
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quantum superposition, is nondistributive). Therefore we must at the outset 
of theorizing choose the logic of our theory. A logic with superposition 
permits a kind of synthesis of the discrete and the continuous; it is well 
known. Therefore it is natural both physically and mathematically to seek a 
quantum mathematics constructed over the quantum predicate algebra in 
whatever sense classical mathematics is constructed over the Boolean predi- 
cate algebra. In particular, set theory has become the nearly universal 
language for mathematics, computer theory, and mathematical physics. 
Therefore it is appropriate first to make a quantum set theory. 

Informal steps in that direction were made in "Space-Time Code" and 
subsequent papers. These overlooked the fact, adduced by Aristotle and 
developed by Kripke and others, that a language for a science, as opposed 
to a language for data recording, needs a concept of the possible. To express 
possibility the present quantum set theory uses the concept of indefinite 
object and indefinite set, and was stimulated by work of Solovay and Scott 
on random sets and Takeuti on quantum sets. With these concepts the 
construction becomes straightforward, and is sketched here. 

In some earlier work we try to transpose field theory from classical to 
quantum time space, for a unitary quantum field theory. This transposition 
is awkward in that it requires a concept of exponential of quantum sets not 
available until recently, and is based on a serious misconception. I am now 
sure that "unitary field theory" is a contradiction in terms. A unitary theory 
cannot be a field theory. In a field theory the local topology of time space is 
almost independent of the contents of time space (being by hypothesis a 
Minkowskian manifold of four dimensions, say). Thus field theories dualis- 
tically divide (time space) form from content. 

A unitary theory might have as its subject only the topological pattern 
of causal relations. This causal pattern, statistically described by the anti- 
metric field of gravity, would be maximally described by discrete topo- 
logical structure in such a unitary quantum theory. Field theory is adequate 
as a phenomenological description of experience where the topology and 
measure of time space do not participate in the physical process. A 
dynamics of the smallest times should involve the topology of time space 
much as general relativity involves the antimetric of time space. Such 
quantum topological effects should dominate during the least times in the 
universe, as during the creation of some particles and of the infant universe. 
The conception of a purely topological quantum physics is vividly expressed 
by Bohm, by Penrose, by Misner, Thorne, and Wheeler, and by others. 

Quantum set theory provides a formalism for a no-field theory, for a 
quantum topology. Its Fock space S is generated not by a time space field 
of creation operators but by one creation operator Br. Yet S has sufficient 
structure to describe both time space and its contents. Just as set theory 
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creates from the null set a universe of discourse rich enough for modem 
mathematics, quantum set theory provides for the creation of the physical 
universe from one point. 

The main lesson among the many I draw from the quantum set theory 
of Takeuti is that there are two steps, not one, from classical set theory to 
quantum. Th.e right route is as follows: (1) classical sets: Boolean and 
definite; (2) semiclassical sets: Boolean and indefinite; (3) quantum sets: 
non-Boolean and indefinite. 

The central idea of indefinite set theory is possibility, a term already 
applied in a like connection by Kripke and Bub. Each object is supposed to 
be associated with and identified with a set of possibilities called its scope. 
An indefinite object proper is one whose scope contains more than one 
possibility. A definite object has only one possibility. 

To emphasize the involvement of the whole system in the subsystem 
studied, I call quantum possibilities choices, distinguishing between initial 
choices, represented by choice vectors or kets, in the terminology of  Dirac; 
and final choices, represented by choice covectors (bras). Quantum super- 
position applies only to choices (of the same tense), not to objects. 

When we deal with quantum systems, we replace the scope of the 
classical indefinite objects, with its commutative function algebra and its 
distributive subset lattice, by a linear space, or slightly more generally by a 
module over a ring, with a noncommutative operator algebra and a nondis- 
tributive subspace lattice. 

An indefinite set is an indefinite object whose possibilities are sets. 
The main mathematical difference between indefinite set theory and 

other set theories such as fuzzy (Zadeh), hazy (Dodson), random (Solovay), 
and those of Takeuti, is how the hierarchy of sets is generated. Indefinite set 
theory uses the tensor product to generate the algebra of projections 
inductively, concurrently with the generation of the sets, while fuzzy, 
random, and Takeuti quantum sets use a quite arbitrary fixed algebra of 
projections, chosen at the start. 

I make three simplifying restrictions in this presentation. I consider 
only those sets that are made from the null set by the operations of set 
theory. I employ only the integers 

I n t = (  . . . .  - 2 , - 1 , 0 , 1 , 2  . . . .  } 

for coefficient numbers or amplitudes, building an integer quantum theory 
more restricted in its choices than complex quantum theory, the theory with 
the usual complex amplitudes. I consider only finite sets. 

Such a theory (null foundation, integer coefficients, finite sets) is best 
for a basic physical theory, a low-level language, and the more elaborate 
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theories (nonnull foundation, infinite sets, coefficients in an algebra) are 
better for more phenomenological theories, higher-level languages. In pri:nci- 
pie any ring with star ( . )  and quasi-inverses (any regular *algebra) m a y  be 
a candidate for the c numbers of quantum physics, and some hypercomplex 
numbers are of physical interest in gauge theories. 

2. DEFINITE SET THEORY 

In this section we summarize the naming of the sets, the operation of 
set multiplication, and the set functions of rank and cardinality. I say some  
things three times: in standard brace-and-comma formulas, in "box algebra," 
and in a Clifford algebra of S numbers. 

2.1. Brace-and-comma Formulas for Sets. We generate Set, the se t  of 
all finite sets, recursively by means of a single polyadic operation is, s ' , . . .  }. 
(An n-adic function has n arguments and a polyadic function has a sequence 
of any number of arguments.) Here we apply this operation only to a filnite 
sequence of arguments and only a finite number of times. 

Suppose s', s" , . . ,  are sets that have been generated at stage n of the 
recursion. Then the sets generated at the next stage include these and also 
the set s given by AI: 

A1. s: = ( s ' , s " , . . . } .  We identify the formulas resulting from A1 in 
equivalence classes generated by A2: 

A2. Commutativity: A permutation of the arguments s ' , s " , . . ,  in A1 
produces an equivalent result. Absorption: Replacing any subsequence 
s', s ' , . . ,  of repeated arguments by one s'  produces an equivalent result. 

For example, (A, B, A} = C A, B}, where two A's have been absorbed 
into one. 

I write this recursion as AI /A2 .  Such a symbolic quotient means tha t  
the numerator generates formulas and the denominator identifies formulas. 

When we begin generating sets, there are no "already generated" sets, 
and the sequence of sets in A1 must be null. A1 must still be applied, and  
generates the set ( }, the null set. 

When 

s = ( a , b  . . . .  } (I) 

we say that a is a member of s, aes, a is in s, and s' contains a. If aca'c.., a", 
we say that a is embraced by a", writing ac*a". No set embraces itself. 

The recursion AI generates formulas consisting entirely of left braces, 
commas, and fight braces, called "brace-and-comma formulas" here. A n y  
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physical or mathematical process having the properties A2 of ( . . . )  is a 
possible interpretation for set theory. 

The most common interpretation of (1), which may be considered the 
standard interpretation, is that s is the "concept" of a, b . . . . .  Insofar as 
concepts are creations of minds, this is a mentalist interpretation; insofar as 
sets are supposed to exist as ideas, an idealist interpretation. Alternatively, a 
set may be interpreted as an equivalence class of synonymous formulas; the 
name of its members; a list; or a possible physical assembly. 

2.2. Sets as Causal Spaces. We also have in mind a somewhat novel 
interpretation of (1). Sets a, b . . . .  may be interpreted as basic events and s 
as their (immediate causal) consequent. The importance of causal order  as a 
possible primitive concept has been emphasized by Robb, Alexandrov, 
Penrose, and others. In earlier studies we represented the causal relation by 
set inclusion acs, not by membership a(s. The greater structure of the 
present theory is supposed to replace the fields that had to be added in the 
earlier ones. 

Each set with the sets it embraces is then a possible pattern of events or 
causal space and defines a graph, a subgraph of the graph of ¢. 

Such a universe has an initial event, the null set; a final event, the set 
itself; and no time loops (closed timelike paths). While these three proper- 
ties of sets as universes are physically plausible, many universes obeying 
Einstein's law of gravity lack these properties. 

We could describe time loops if, as in the early days, sets were allowed 
reciprocal membership (as once one said that l((1} and { 1 }(1; that the "set  
of unit sets" 1 is a member of and also contains the set whose only member 
is 1) and self-membership (as once one said tha t  the universal "set"  
contained itself VeV). 

2.3. Box Algebra of Sets. The set construction A1 is conveniently 
factored into two, more elementary, processes, dyadic "boxing" a []  b, and 
monadic "bracing" (a}. 

aFqb is a group product and coincides with the Boolean sum ( =  
symmetric difference = exclusive or). The Boolean "sum" must be recognized 
as a product. A true sum a + b is introduced later, and the box product  
a [] b distributes over that sum. 

(a} is the unit set or singleton containing a. We also write (a} with an 
operator Br defined by 

Br(a) :  : (a} (2) 

We define 

B r ' ( s )  : = {Br(x)lx,s } (3) 
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Let us now think of Set as an algebra with two operations, Br and FO, t o  be 
generated by the following recursion B1/B2. 

An important point of notation: Since the formula " (  }" is the ident i ty  
for the box product a [] b, I designate ( } by 1. 

The semicolon in B 1 means a disjunction of possible recursions. 
B l . s :  =1 ;  {s'}; s'Vqs". 
B2. srqs '= s'[]s, s[](s 'Ds")=(sE]s ' )rqs" ,  l[]s = s, s ~ s =  l. 
The interpretation of the box and brace processes is determined b y  the 

interpretation of the set theory. In the causal interpretation of set theory, 
the brace Br increases proper time by one elementary unit of time; one ~', I 
say for short. Presumably, 

10 -43  s e c  ~<1 ~" ~< 10 -23  s e c  (4) 

Evidently Br will be closely related to energy, the time generator, in the 
causal interpretation. Schematically speaking, we expect 

Br = exp(i E )  

in units where ~" and h are 1, with i defined by this too. 
a [] b, in the causal interpretation, is the consequence of the inverse 

consequences of a and b. This rarely exists in familiar time spaces. 

2.4. Clifford Algebra of S Numbers. For brevity I call a free additive 
group (a "linear space over the integers") a module. By an inner p roduc t  
m- m' on a module M, I mean a symmetric bilinear function on M × ~ to 
Int. 

By a submodule of the module M we shall mean a subset N of M tha t  is 
closed with respect to linear dependence as well as linear combination. 
Example: The module of even integers 2Int is not a submodule of the 
module of integers Int. Proof: 2Int does not contain 1, yet 1 is dependent  on 
2Int: 2X 1 --2. 

The Clifford algebra C - - C ( M )  of a module M with inner p roduc t  
m. m' is defined by the following recursion C1/C2:  

C1. e: = 1; m; c'c"; c'+ c"; - c'. 
C2. c(c'c")=(cc')c", c l=c .  ( c + c ' ) + c " = c + ( c ' + c " ) .  c + O = c .  

- c + c = 0 .  c + c ' = c ' + c ,  m m ' + m ' m = 2 m . m ' ,  c (c '+c")=cc '+cc" .  
There is a well-known expression of C(M)  as a sum of submodules 

C = C(0)+ C(1)+ C(2)+ . . -  with C(0)=In t  and C(1)= M. The funct ion 
C(n) assigning a submodule to each number n =0,  1,... is called the grade 
of the Clifford algebra. C(n) is uniquely defined as the submodule spanned 
by C numbers expressible as products of n M numbers but not n -  1 M 
numbers. C numbers in C(n) are said to have grade n. 



Quantum Sets and Clifford Algebras 495 

The module M also defines a Grassmann algebra G(M),  with the same 
members as C ( M ) ,  by a recursion G I / G 2  that differs from C1/C2 only  in 
that the products xy are all replaced by the wedge product x A y, the inner 
product m . n  is replaced by 0, and the relation 

ram'= m A rn '+  m .m' 

is imposed between Clifford product ram' and Grassmann product rn A m '  
of M numbers. 

The spectacular physical application of Clifford algebra is the Dirac 
equation. The importance of Clifford algebra for basic physics has been 
emphasized by Eddington ("E numbers"), Riesz, Hestenes, and Dresden, 
and the mathematical theory has been developed by Chevalley. 

We define the important Clifford algebra S, later representing the 
quantum set; its submodule S(1), later representing the quantum unit set 
(cardinality 1); a preferred redundant S basis B ( = - B), representing the 
classical or Boolean set; a preferred redundant S(1) basis B(1), representing 
the Boolean unit set; and the integers Int, an S ray also written Int = S(0); 
with generic members s in S, b in B, r in S(1), a in B(1), and i in Int, by the 
following recursion S 1 / $ 2 ,  a specialization of C1/C2: 

S1. b: =1:  {b'); b'b"; - b ' .  
s: = b ' +  b". 
a: = {b'}. 
r :  = a ' +  a". 
i : = l ; i + / ' ;  - - i ' .  

$2. s( s '  s")  = ( ss ')s",  si = is = s. s + ( s" + s") = ( s + s') + s". 
s + s ' = s ' + s ,  s + 0 = s .  - s + s = 0 .  s ( s ' + s " ) = s s ' + s s " .  
{s + s'} = (s} + {s'}. { -  s} = - {s}. 
rr' + r'r : 2r.  r'. 
a . a =  - 1 .  
a. a '  = 0 unless a '  = a or -- a. 

The integers Int are S numbers and must be separated from the 
integers of yon Neumann, which are sets of increasing rank and cardinality. 

We interpret S numbers recursively. Let S numbers s, s ' , . . ,  represent 
sets x, x' ,  . . . .  Then 

I1. 1 represents the null set. 
I2. {s} represents (x}. 
I3. ss ' . . ,  represents the Boolean sum x [] x ' . . . .  
I4. is (i  g= O) represents x. 
S numbers not interpreted by I 1 - 4  are meaningless until Section 4. 

Thus 0 names no set. 
S = C(S(1)). S(1) is the module underlying S. 
In the following paragraphs we adduce some operations on definite 

sets, for generalization later to indefinite sets. 
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2.5. Grade and Cardinality. Let S(n) be the grade of S. 
Grade on S expresses the set theory concept of cardinality. If S n u m b e r  

s represents a set x then the grade of s is card(x), the number of m e m b e r s  of 
x. We write c a rd ( s )=  n for nonzero S numbers in S(n) .  

B numbers of cardinality 0, 3,4, 7, 8,...  have square + 1; the rest, - 1. 

2.6. Inner Product. The inner product r. r '  of two S(1) numbers r, r" is 
defined by S I / $ 2 .  Any set is represented by two B numbers, and dist inct  
sets by orthogonal B numbers. The grade assigns to each S n u m b e r  s 
an integer Av(s)  defined as the projection of s onto S(0). T h a t  is, 
Av(a(  ) + b ( (  }}+  . . . ) = a  for a , b  . . . .  in Int. I define an indefinite 
bilinear form s - s '  on S by 

s.s'=Av(ss') 

This form extends the form m . m "  already defined for S(I) numbers .  
Evidently A v ( X ) =  X. 1. There also exists a unique positive definite inner  
product s*s'  on S such that 

b*b = 1, b*b'=O 

for all B numbers b, b'  with b 'v e + b, - b. 

2.7. Creator-Destructor  of a Set. If s is any S number, s defines a 
linear operator on S by left multiplication, mapping any S number t i n to  st. 
Let s, t, and st represent sets x, y, and z, respectively. I f y  includes x t hen  z 
does not, and conversely. Thus s may be called a creator-destructor of :x. In 
the Grassmann case ( a . a  = 0  instead of - 1 in $2) s creates x or annihilates 
the operand entirely, and is called the x creator. 

2.8. Adjoint. We use the metric s*s' on S to define an adjoint L *  for 
any endomorphism ("integer linear operator") L (when L* exists) by 
requiring for all S numbers s and s '  that 

s ' . L * s  = s . L s '  

We speak, in obvious analogy to the usual Hilbert space terminology, of 
Hermitian and anti-Hermitian operators, normal operators, isometric opera -  
tors, and unitary operators on S. 

2.9. Rank of a Set. The rank of a B number b is a natural n u m b e r  we 
will write as rank(b). Rank is the maximum number of nested braces. We 
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define rank recursively for B thus: Let b, b', . . ,  have ranks n, n', . . . .  Then 
R1. rank( l )=  1. 
R2. rank({b})= n + 1. 
R3. If card( bb') --- card(b) + card(b') then rank(bb') = sup(n, n'). 
In the causal interpretation, the rank of a set means the proper time 

interval between the first and last events in the universe represented by the 
set, measured in 7r of equation (4). This identification depends upon and 
incorporates the mathematically curious feature of relativity that timelike 
geodesics are curves of greatest, not least, interval. 

3. INDEFINITE SET THEORY 

One example of a Boolean indefinite set is an indefinite object ISet 
whose scope is Set. 

We may define for indefinite sets the relations and operations already 
defined for definite sets, the new concept of multiplicity, and the new 
operation of addition. In this classical statistical theory we make use of the 
fact that indefinite sets are themselves merely indefinitely described definite 
sets, as a kind of scaffolding for the construction. In the following section, 
on quantum sets, we make the quantum leap from the scaffolding, into 
superposition. 

We designate by sc(A) the scope of object A. Conversely, we write 
ob(S) for the indefinite object whose scope is S. Thus ISet=ob(Set). In 
anticipation of quantum practice, we represent all scopes as modules 
("linear spaces over the integers") provided in the case of Boolean objects 
with preferred bases consisting of the possibilities for the indefinite objects. 
A module with a preferred basis we call a "based module" in what follows. 

Generally speaking, we define an operation on indefinite objects by 
performing the operation on the possibilities of the objects and assembling 
the results into a scope. Some of the following definitions illustrate this 
process. 

3.1. Multiplicity of an Indefinite Object. Indefinite objects have a 
parameter that is identically 1 for definite objects, m u l t i p l i c i t y .  In spec- 
troscopy the quantum analog of multiplicity is also called degree of degener- 
acy, and "nondegenerate" means "having multiplicity 1." Multiplicity is the 
dimension of the scope: 

mult(B) =dim(sc(B))  

Sets may now have three integer parameters of interest, rank, cardinality, 
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and multiplicity. They are independent parameters, and while multiplici ty  is 
always defined, rank, and cardinality are not. 

We henceforth identify definite objects with indefinite objects of m~ulti- 
plicity 1. 

Example: A pair of dice may be described as an indefinite object  of 
rank 1 (being a set of nonsets), cardinality 2 (being a pair), and multiplicity 
36 (there being 36 possibilities). A coin, likewise, has rank 0 and cardinality 
0 (having no members) and multiplicity 2. On the other hand, an indefinite 
object that is either a coin or a pair of dice has indefinite rank, indefinite 
cardinality, and multiplicity 38. The scopes of these indefinite objects are 
based modules of dimensions 36, 2, and 38 (over the integers). 

3.2. Sum of Indefinite Objects. For any indefinite objects (including 
indefinite sets) A, B ... .  we define the sum A + B by giving the based 
module sc(A+ B + . - . )  as a (direct) sum of the based modules sc(A), 
sc(B) . . . .  : 

s c ( A  + B + . - .  ) :  = • • • (5) 

In this equation we add modules by forming sums of the respective module  
members in all possible ways. We must still, however, give a basis for the 
sum. For objects with scopes disjoint except for 0, we define the basis o f  the 
sum to be the union of the bases of the terms. This inelegance disappears in 
the quantum theory. 

The sum of indefinite objects is commutative and associative and has 
the identity object 0 whose module consists of the number 0. 

This enables us to express any indefinite object as a sum of indefinite 
objects of multiplicity 1, or definite objects. 

For disjoint terms, the multiplicity of a sum is the sum of the multiplic- 
ities of the terms: 

mult(A + B + ' - -  ) =mul t (A)  + mult(B) + - - -  

It is simple now to define the product and exponential of indefinite sets. 
Using the sum and product we may recursively define a class of indefinite 
sets in close correspondence to the recursion $1/$2 given for definite sets. I 
omit details for reasons of space. 

The product of indefinite objects is commutative and associative and 
distributes over the already defined sum of indefinite objects. The object 
ob(1) whose module is Int is the identity for this product. 
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3.3. Brace of  an Indefinite Set. We define (A} for an indefinite set A 
by giving the scope (based module) of {A}. We take 

sc({A)) : : Br'(sc(A)) 

We define the sum and difference of {a} and {a'}, for any members a,  a'  of 
sc(A), by 

{ a }  + { a ' }  = + { -  = - 

so that bracing is an endomorphism. We define the basis of the based 
module sc({A}) by bracing the members of the basis of sc(A). Bracing does 
not change multiplicity: mult({A})=mult(A). 

4. QUANTUM SET THEORY 

I call possibilities that admit superposition "choices." 
A quantum object is an indefinite object with choices. In the most 

common language, a quantum object is represented by a scope that  is a 
linear space or, slightly generalized, a module. There is much to say for the 
position, especially developed by Segal, that the best space to represent 
quantum objects is an algebra, but for maximum familiarity I use linear 
spaces here. For economy I consider only the quantum object QSet whose 
scope is the module S defined by the recursion S1/$2. No preferred basis is 
assumed for quantum objects in general. 

The usual way to make the linear space and algebra of coordinates of a 
quantum theory, given a classical theory, is a device used by Frobenius. If a 
group acts as a set of transformations (typically nonlinear) on a set X 
(typically the scope of some system), then Frobenius constructs a (linear) 
representation of the nonlinear group by forming a space L(X) of functions 
on X and (in the simplest instance) letting the group act in the natural way 
on this function space. I f f (x )  is a function in L(X), then a group element g 
maps f(x) into f '(x) defined by 

f '(x') = f(x)  for x ' =  g(x) (6) 

We regard S as the result of applying the Frobenius construction to X = B, 
whose members represent Set doubly. 

We now have an interpretation for the operation of addition in S 
previously uninterpreted. We add to the rules of interpretation I1-I4  the 
rule 
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I4 cont. And u + u' represents a quantum superposition of the choices s 
and s'. 

Physical operators of any quantum theory are built out of basic 
operators of two kinds, which I will call Q-type and P-type operators. A 
Q-type operator on L ( X )  is a multiplication by a function q(x) in L (X) .  
Such a function usually represents a physical quantity q in the classical 
theory with the scope X. A P-type operator on L ( X )  is a linear transforma- 
tion of L(X) defined by a map of X into X, not a real function on X, in the 
manner of equation (6). In a classical theory using the scope X, a map o f  X 
into X does not represent a physical quantity, but there is often a nat~ural 
way to construct such a map from a physical quantity; for example, via 
symplectic structure. 

It is important and not always easy to choose the right scope X before 
applying the Frobenius construction. To get quantum mechanics f rom 
classical mechanics, we take X to be the configuration space or q space, not 
the phase space or (p, q) space, and take the coordinate operators to  be 
Q-type, but the momentum operators to be P-type, associated with infinites- 
imal translations of q space. 

Each S number is now supposed to represent a possible choice for the 
quantum object QSet = ob(S). Each Q-type operator retains the interpreta- 
tion of the function on S. For example, the functions rank and card on Set 
define corresponding functions on B which in turn give rise to Q-type 
operators on S of multiplication by the functions rank(b) and card(b), i f  we 
represent each S number c by the amplitude a(b) = b. c. The operators rank 
and card are interpreted in the usual quantum way as the rank and 
cardinality of the (indefinite) quantum set. 

On the other hand, the brace Br(b) = {b) gives rise to a P-type quantity 
represented by the endomorphism (integer linear operator) B defined by  Br 
c =  Br(c)= {c}. Formally, the quantum operator Br braces the entire S 
number c on which it acts, and is reduced by linearity to a sum of braces of 
basic members. 

The interpretation of P-type quantities is based on their algebraic 
properties, especially their commutation relations with Q-type quantities. 

For example rank is a Q-type quantity. The brace creator Br is also a 
rank creator in that 

(rank)Br = Br(rank+ 1) 

(This tells us that Br maps an eigennumber of the operator rank into 
another eigennumber of rank with eigenvalue greater by 1.) To construct 
observables we require normal operators. 

We compute for this purpose the adjoint of Br. Since Br increases rank 
by 1 and results in a set of cardinality 1, Br* annihilates all basis members 
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of cardinality other than one (nonunit sets), and maps any unit set into its 
member. Thus Br* is a rank destructor and a brace destructor. 

Let us write [unit] for the projection operator or projector on S(1) and 
I-[unit]---[nonunit] for the projector on nonunit sets. It is evident that 

Br*Br= 1 

BrBr* = [unit] 

B r * B r -  BrBr* = [nonunit] (7) 

The usual Bose-Einstein relations between the creator and destructor of 
braces, or more accurately of rank, is Br*Br-BrBr*  = rank (not valid here). 
The normalization factor that would be required to convert our Br into an 
operator with this more familiar property involves a square root that is not 
available within the integers, but will be available at a later stage, when the 
reals have been introduced. We may take equation (7) as the integer form of 
Bose-Einstein relation. 

We see that Br, being nonnormal, cannot itself represent an observable 
quantity according to the usual principles of quantum theory. Br gives rise 
to such normal operators as Br+Br*,  B r - B r * ,  and Br*Br. The operator Br 
is an isometry. 

A B number b is not a creator of b, and we have called b a crea tor-  
destructor of b. For a b creator in the usual sense we define the operator of 
left Grassmann multiplication with b, designating this operator by c(b): 

c(b)m=bAm 

Let n(b) be the (Q-type) projector on the submodule generated by sets 
containing b. In(b) has eigenvalue 0 on sets lacking b and 1 on sets 
containing b.] It is easy to see that c(b)* annihilates any basis member that 
does not contain b, and that 

c(b)c(b)*:,(b) 

¢(b)*c(b)=l- n(b) 

c(b)c(b)* + c(b)*c(b):  1 

the usual Fermi-Dirac relation between creator and destructor. In the 
Fermi-Dirac case, there is no problem with square roots. Fermi-Dirac  
relations are more natural for integer coefficients than Bose-Einstein. 

There is an algebra of quantum sets much like the algebra of indefinite 
sets. 
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5. DISCUSSION 

We have formally quantized set theory. The result is an algebra (int the 
general sense) based on three operations (subtractive) superposition X - - Y ,  
brace Br(X), and Clifford product XY. Br(X) and X Y  come from classical 
set theory, and X -  Y from quantization. 

As an exercise in applying this algebra we interpret sets as events and 
membership as immediate causal relationship in a quantum topology. 

Indeed if the theory of the causal relation of the universe were  a 
quantum theory, this would account for the quantum coherence of na tu re  as 
simply as possible. 

The universe is relativistic as well. Without reference to symnaetry 
groups, which must all be approximate, we can express the idea of relativity 
by saying that all assertions about time space must be expressed solely in 
terms of the pattern of causal relations. We have suggested a scope S f o r  the 
universe with definite dimension and inner product in order to have  a 
theory where we could formulate questions about the quite distinct d imen-  
sion and (antimetric) inner product of the universe itself. These have m o r e  
to do with one choice than with the whole scope and are next on my agenda.  

Some difficulties of physics already appear. The universe of this theory,  
unlike Einstein's, must have an original event (the null set) and no t ime 
loops, lacks local Lorentz invariance, and may have huge dimension or 
none. I suspect the arrow on these graphs may be a vestige of macroscopic 
thermodynamics, and am exploring its elimination with a symmetric causal  
relation. Another plausible simplification replaces the two operations B r ( X )  
and X Y  by one dyadic operation (XY)  = Br(XY), a nonassociative product .  
This gives each event two antecedents as in the Feynman checkerboard and 
the "space-time code." 

If we think of the pattern as the graph of a computer, relativity deals 
harshly with its hardware. Man-made computers are assemblies of persistent 
things with persistent interconnections. They thus define a rest system. It 
would mean giving up the principle of relativity of motion to identify the 
world with such a computer. The elements of the world computer are 
transient, and may be identified with world points or events themselves. If 
we persist in thinking of the world as a computer, we should imagine that  
each of its cells lasts but a ~'. 
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